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Alrstraet--The instability of a fluid layer induced by modulated irradiation is studied numerically. Based 
on the Eddington approximation for the equation of transfer, the time-periodic temperature profile of the 
basic state is solved analytically. A system of linear equations with periodic coefficients describing the 
behavior of disturbances is obtained by linear stability theory. Using Floquet's theory, the disturbances 
are expanded by a double series of mixed Fourier and Chebyshev form. An algorithm combining Galerkin 
and collocation methods is developed and successfully traces the stability boundary between stable and 
transiently stable states. For the case of a fluid layer heated from below by a modulated temperature, the 
results show that modulation has a destabilizing effect at low frequencies and a stabilizing effect at high 
frequencies, which is in agreement with the available theoretical analyses and experimental data. The effects 
of Biot number and radiative parameters, such as Planck number and optical thickness, on the critical 

Rayleigh number are analyzed and compared with the unmodulated cases. 

INTRODUCTION 

Radiation-induced flow is an important phenomenon 
in meteorology and has recently been noticed in the 
technologies of laser fusion, material processing, and 
collection and utilization of solar energy. Because of 
the absorbing, emitting and scattering behavior of the 
participating media, the heat transfer and fluid flow 
are strongly affected by the radiative properties of the 
media and the boundaries, the geometry of system, 
and the magnitude of irradiation. Webb and Viskanta 
[1] theoretically and experimentally studied the natu- 
ral convection in a vertical rectangular enclosure 
heated by irradiation from one side. Yang [2] inves- 
tigated the stability of a horizontal fluid layer 
irradiated from the top and obtained the criteria for 
the onset of instability. Recently, Yang and Leu [3] 
further found the criteria of onset of secondary flow 
in an inclined slot irradiated from one side. 

The effect of modulation on the dynamic system 
has long been interesting because stabilization or 
destabilization may occur in the presence of modu- 
lation, which thus enhances the mass, momentum and 
heat transport. The effects of modulation on the 
Benard instability were studied by Venezian [4], 
Rosenblat and Herbert [5], Rosenblat and Tanaka 
[6], Yih and Li [7], Gresho and Sani [8], and Finucane 
and Kelly [9] ; and on the Taylor instability by Don- 
nelly [10], and Donnelly et al. [11]. A review of papers 
on this subject can be found in the article by Davis 
[12]. It is commonly termed a basic periodic state, 
unstable if there exists a disturbance that experiences 
net growth over each modulation cycle, stable if every 
disturbance decays at every instant, or transiently 

stable if a disturbance grows during part of the cycle 
but ultimately decays. Among those studies, Rosen- 
blat and Herbert [5] considered a fluid layer of free- 
free boundaries which is heated from below. By 
expanding the variables in frequency power series they 
obtained the periodicity criterion for which the basic 
state is unstable if an infinitesimal disturbance 
achieves net growth over one cycle of oscillation. 
From another viewpoint, the amplitude criterion was 
proposed for which the basic state is unstable if any 
disturbance increases during the cycle by an arbitrary 
factor of 10. They concluded that the periodicity cri- 
terion is a sufficient condition for instability and the 
amplitude criterion can be regarded as a sufficient 
condition for stability. It was also found that a tran- 
siently stable state exists between these two critical 
conditions at low frequencies. On the other hand, 
Rosenblat and Tanaka [6] numerically showed that 
the critical Rayleigh number for the case of rigid-rigid 
boundaries always experiences positive enhancement 
in the presence of a periodic modulation which is 
consistent with the periodicity criterion. Finucane and 
Kelly [9] later found both experimentally and ana- 
lytically that for low frequencies the modulation is 
destabilizing, whereas at higher frequencies sta- 
bilization is apparent. Their results support the ampli- 
tude criterion at low frequencies and periodicity cri- 
terion at co > 3. In the present work, a numerical 
method is developed to trace the stability boundary 
between stable and transiently stable states and is 
justified by comparison with known results. Then the 
onset of convection of a fluid layer induced by modu- 
lated irradiation is considered. The effects of ampli- 
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NOMENCLATURE 

A constant ( --- 3"c 2) ~R 
B constant ( = 4rlzP ) F. 
Bi Biot number 
g gravity ~b' 
h convective heat transfer coefficient ( 
J magnitude of the disturbance of j  q 
j zeroth moment of radiative intensity ® 
k wavenumber 0 
L thickness of a fluid layer 0 
P Planck number ~c 
p pressure /~ 
Pr Prandtl number v 
q complex radiative flux o 
qR radiative heat flux 
q" irradiation, constant part r 
Ra Rayleigh number 
T dimensional temperature (o 
T, nth degree Chebyshev polynomial 
t time 
V magnitude of the disturbance of v3 
vi velocities 
x, coordinates. 

Greek symbols 
thermal diffusivity 

~p Planck mean absorption coefficient 

Rosseland mean absorption coefficient 
amplitude of modulation 
magnitudes of disturbances 
disturbances 
coordinate for Chebyshev polynomials 
non-grayness 
magnitude of the disturbance of 0 
complex temperature 
temperature 
thermal conductivity 
dynamic viscosity 
kinematic viscosity 
Stefan-Boltzmann constant or growth 
rate of the disturbances 
optical thickness 
dimensional frequency of modulation 
frequency of modulation. 

Superscript 
basic state. 

Subscripts 
c critical value of unmodulated case 
p periodic 
s non-periodic 
zo surrounding. 

tude and frequency of modulation as well as the radi- 
ative properties on the onset of instability are 
examined. 

PHYSICAL SYSTEM AND THE BASIC STATE 

Consider a horizontal layer of fluid of thickness L 
placed above a solid boundary and subjected to a 
modulated irradiation q" (1 + e cos ~t) from the upper 
free surface, as shown in Fig. 1. The lower solid 
boundary is assumed to be insulated and black. The 
upper free surface is assumed to be transparent and 

q"( 1+ ecosf~ t ) 

h T~ 

I X3 m 

I g / / / / / / / / /  / / /  

Fig. 1. A fluid layer heated by modulated irradiation. 

has a convective heat transfer coefficient h with the 
surroundings, which is at a temperature of T~. 

For the incompressible fluids with constant proper- 
ties and satisfying the Boussinesq approximation, 
using Eddington approximation for the transfer equa- 
tion, the equations governing the flow and heat trans- 
fer in the participating media can be referred to Yang 
[2], and Arpaci and Gozum [13]. In this paper the 
dimensionless quantities are defined in the same way 
as those in Yang [2], while only the nonscattering 
cases are considered. 

In the basic state, the fluid is stationary. By lin- 
earizing the emissive power, the one-dimensional 
equations describing the periodic temperature and 
radiative heat flux are 

30 ~20 ~q~ 
(1) 

~t 8x38x3 8x3 

O:ct~ 80 
- -  - 3z2q~ = 4 q z P - -  (2) 
8x38x3 8x3 

where z = (~p~R)I:2L is the optical thickness, % and ~R 
are the Planck and the Rosseland mean absorption 
coefficients, respectively, ~/= (~p/~R) ~/2 is the non- 
grayness, P = 4oT~/(K/L) is the Planck number, and 
a is the Stefan-Boltzmann constant. The associated 
boundary conditions are 

dO 
- - - + q ~ = 0  atx3 = 0  (3a) 

dx3 
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1 dq R 
- - - - - 2 ~  R = 0  a tx3  = 0  (3b) 
r/'~ d x  3 

dO 
dx3 - Bi(O-O~)  at x3 = 1 (3c) 

1 dq3 R 

q/: d x 3  
- -  + 2 q }  = 4 [ P ( O - O ~ ) - ( 1  +ecosogt)]  

at x3 = 1 (3d) 

where Bi = hL/x  is the Biot number, and co = OL2/:t 
is the dimensionless angular frequency of  modulation.  

Since the basic-state solutions are periodic, they can 
be separated into two parts, 

0 - 0 ~  = 0~+0p (4) 

= q~ + %  (5) 

where the subscripts s and p represent nonperiodic 
and periodic, respectively. The nonperiodic part has 
been solved by Yang [2], and Yang and Leu [3], and 
the periodic part can be solved by letting 

0p = Real {0e" '~'} (6) 

Op R = Real {qd'°'}. (7) 

Here 0 and q are two complex functions of  x3 satisfy- 
ing 

(D 2 --io))O- Dq = 0 (8) 

- -BDO+ (D 2 - -A)q  = 0 (9) 

where D = d/dx3, A = 3"c 2 and B = 4t/rP. The bound- 
ary conditions are 

D O - q = O  atx3 = 0  (10a) 

1 
- - D q - 2 q = 0  atx3 = 0  (10b) 
t/z 

DO+BiO = 0 atx3 = 1 (10c) 

l 
- - D q + 2 q - 4 P O = - 4 e  atx3 = 1. (10d) 
t/z 

The general solutions of  0 and q can be written as 

0 = c~ cosh (2tx3)+c2 sinh (2ix3) 

+c3cosh(,~2x3)+c4sinh(22x3) ( l l )  

2,~ - i~o ,~, - i~o 
q = c~ 21 sinh (21xs). +c2 2 ~ - 1  cosh (21xs). 

2~ -- iw . .  . 2~ -- iw . 
+ c~ ~ - - 2  sinh (/].2X3). . t/L2 X 3 ) -{- C 4 ~ cosn (12) 

In the above equations, Cl, % c3 and c4 can be deter- 
mined from the boundary conditions (10), and _+ 21 
and + 22 are the roots of  the characteristic equation 

24-(A+B+iw)22+iogA = O. (13) 

LINEAR STABILITY ANALYSIS 

In the linear stability analysis, the perturbed quan- 
tities are added to the basic state, and then all non- 
linear terms are neglected. Because the periodic 
behavior of  the basic state appears in the coefficients 
of  disturbance equations, the perturbed quantities, 
according to the normal mode analysis and Floquet 's  
theory [14, 15], can be expressed by 

qY = ~(x3,t) e i(k~'l +~2~2)+~'. (14) 

Here q7 represents the disturbances, • is the mag- 
nitude of  disturbances and is periodic with the same 
period as that of  the basic state, k~ and kz are the 
wavenumbers of  the disturbances in the Xl and x2 
directions, respectively, and a = a t +  ia, is the growth 
rate of  the disturbances. The basic state, with respect 
to the infinitesimal disturbances, is unstable if ar is 
greater than zero or stable if o- r is less than zero. 
Here unstable means that an infinitesimal disturbance 
either achieves net growth over one cycle of  modu- 
lation, or grows during part of  the cycle but ultimately 
decays. At  the neutral stable state ar is equal to zero. 

With some similar manipulations as Yang [2], the 
equations describing the disturbances can be 
obtained : 

1 2 , ~ V  k 2 ) 2  -- ~ r ( D  - k - ) ~  + ( D  2 -  V - k 2 R a O  

8t 

o" 
= p r ( D 2 - k 2 ) V  (15) 

80 
V+  (D z - k 2 - 4qzP)O + q'rJ = aO 

~x3 
(16) 

1 2 z z P ® + ( D 2 - k Z - 3 z 2 ) J =  0 (17) 

where V, ® and J are the magnitudes of  the dis- 
turbances for the x3-component velocity, temperature 
and radiation, respectively, Pr = v/~ is the Prandtl 
number, R a =  (gflL3/w)(q"L/x) is the Rayleigh 
number,  fl the thermal expansion coefficient, 
D = d/dx3 and k 2 = k 2 + k2 2. The associated boundary 
conditions are 

V = D V = O  atx3 = 0  (18a) 

D O +  q D J  = 0 at x3 = 0 (18b) 

4 P O +  2 q D j - J  = 0 atx~ = 0 (18c) 
3r3 

V = D 2 V = O  atx3 = 1 (18d) 

D ® + B i ® = O  atx3 = 1 (18e) 

z D J + J  = 0 atx3 = 1. (18f) 

Equations (15)-(17) with the boundary conditions 
(18) constitute an eigenvalue problem. For  the 
existence of  nontrivial solutions, the eigenvalues a are 
of  an infinitely great number  of  discrete values and 
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depend on the parameters and the wavenumber func- 
tionally as 

a = j(Ra, Pr, Bi, P, q, z, ~, o9, k). (19) 

At the neutral state, the real part of the most unstable 
eigenvalue vanishes. The critical Rayleigh number  
occurs at a neutral state which has a min imum Ray- 
leigh number  at the corresponding critical wave- 
number.  

To solve the linear differential eigensystem (15) 
(18), the unknowns are expanded, after the trans- 
formation ~ = 2 (x3-  1/2) is made, by the combinat ion 
of complex Fourier  series and Chebyshev poly- 
nomials : 

V =  ~ ~ am. { T,, -- ½ [1-- ( --1)"] T, 
m =  - - o c n = 2  

- '2 [1 + ( -  1)"]T0}e' ...... (20) 

(:)= ~ ~ bm,,T,,e' ...... (21) 
m - -  ~ n 0 

j= ~ ~ cmnTnei ..... (22) 
m -  - x ~ n = 0  

where am,, brn,+ and c,,, are unknown coefficients, and 
T,(~) is the nth degree Chebyshev polynomial of the 
first kind [16], defined in the interval - 1 ~< ff ~< 1. The 
reason to choose the trial functions, which satisfy only 
two boundary  conditions for V but none for (9 and J, 
was explained by Yang [2]. 

Substituting the lowest M × N terms of equations 
(20)-(22) into equations (15)-(17), then eliminating t 
by the Galerkin method, i.e. multiplying e -ira°'' then 
integrating over one period, and requesting the ident- 
ities to hold at the N - 2  collocation points, 

~ . = c o s  x n =  1,2 . . . . .  N - 2  

and at the two boundary  conditions for each variable, 
an algebraic eigensystem is obtained : 

AX = c;BX. (23) 

Here, A and B are two 3(M × N ) x  3 (M× N) coeffi- 
cient matrices. X is a 3(M × N) vector composed of 
the unknown coefficients. 

The eigenvalues of the generalized eigensystem (23) 
is solved by the QZ algorithm [17], which traces all 
eigenvalues with high accuracy. By examining the 
structure of equation (23), it is found that c,,,, can 
be eliminated without influencing the eigenvalues. A 
condensed eigensystem of order 2(M x N) is obtained 
for reducing computat ion time, before the eigenvalue 
solver is called. The Ra at the neutral stable state, at 
which the real part of  the most unstable eigenvalue 
vanishes, is searched by the secant method, which 
needs two initial guesses. The iteration is not ter- 
minated until the real part of the most unstable eig- 
envalue is less than 10 -6. For  the fixed parameters, 
different Ra at neutral stable states may be obtained 
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Fig. 2. Percentage change of critical Rayleigh number vs 
frequency of a fluid layer with Pr = 0.7 sinusoidally heated 

from below. 

for different wavenumbers. The minimum Rayleigh 
number  is called the critical Rayleigh number, which 
occurs at the critical wavenumber.  

To assure the validity of the above algorithm, the 
case of a fluid layer between two rigid boundaries, 
with a fixed temperature at the upper boundary and 
a modulated temperature at the lower boundary,  is 
calculated and compared with the available results [5, 
9]. The cases for Pr = 0.7 and e. = 0, 0.3, 0.5 and 1 are 
shown in Fig. 2 where the ordinate is in terms of the 
percentage change of the critical Rayleigh number,  
compared with the unmodulated case Rac = 1707.76. 
At low frequencies, it is seen that modulat ion has a 
destabilizing effect, which is consistent with the ampli- 
tude criterion of Rosenblat and Herbert [5]. In the 
quasi-steady limit oJ ~ 0, the percentage change of the 
critical Rayleigh number  is, within a certain accuracy, 
close to the theoretical result (Ra/Rac)-1--*-~.; 
( l + e ) ,  which is expressed by the horizontal lines 
below each curve. At high frequencies, modulat ion 
has a stabilizing effect which is consistent with the 
periodicity criterion of Rosenblat and Herbert [5], for 
which instability occurs globally and can be observed 
over one cycle. The destabilization effect at low fre- 
quencies, as well as the stabilization effect for e) = 3.5 
and 0.8 < ~ < 1, was experimentally approved for air 
by Finucane and Kelly [9]. In the present calculation 
the stabilization is found to occur starting from (u ~ 3 
for e = 0.3 and (o ~ 10 for e = 1, which is in broad 
agreement with the experiment. 

RESULTS AND DISCUSSION 

To simplify the analysis of the complicated relation 
of equation (23), q is set equal to 1, which means that 
the participating medium is assumed to be gray. The 
convergence of numerical results is examined by using 
different resolutions to calculate the critical Rayleigh 
number  for a typical case. The results for Pr = 0.7, 
Bi= 1, P =  1, r =  1, e,= 1, (o=0 .01 ,  and k = 2 . 1 2  
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Tablel .  R a v s M a n d N f o r P r = 0 . 7 ,  B i = l , P =  1, r =  1, 
e = 1, o9 = 0.01 and k = 2.12 

N 
M 6 8 10 

3 2878.62 2914.61 2913.88 
5 2633.50 2666.43 2665.76 
7 2554.40 2586.34 2585.70 
9 2519.03 2550.52 2549.89 

11 2500.34 2531.60 2530.97 
13 2489.55 2520.68 2520.05 
15 2483.14 2514.18 2513.56 

are shown in Table 1 for various combinations of  M 
and N. It is seen that at a fixed M the critical Rayleigh 
number converges rapidly as N is increased from 8 to 
10, which shows the exponential convergence of  the 
Chebyshev polynomials, whereas a larger M than N 
is needed for the expansion in time by a complete set 
of  Fourier  series. In the following calculations, the 
results are obtained from two consecutive resolutions 
for which the relative variation is less than 1% and 
the error for the case of  quasi-steady limit, e) ~ 0, 
compared with the theoretical value (Ra /Rac ) -1  --* 

- e / ( 1  +~) is within 2%. 
When radiation is considered in thermal instability 

with fixed boundary temperatures, it was found [13] 
that radiation is an additional mode of  heat transfer 
besides conduction, thus enhancing fluid particles to 
release energy and delaying the onset of  instability. 
While for the situation of  radiation-induced instability 
[2], because the extinction effect of  participating media 
on the irradiation is proport ional  to the optical thick- 
ness, the onset of  instability occurs at a higher critical 
Rayleigh number  for larger optical thickness than for 
smaller optical thickness. When the irradiation is 
modulating, the frequency has a similar effect to a 
layer of  fluid heated from below by a modulated tem- 
perature. As shown in Fig. 3 for Pr = 0.7, Bi = 1, 

P = 1, and z = 1, at low frequencies, modulat ion has 
a destabilizing effect which increases with increasing 
amplitude of  modulation.  The horizontal lines below 

. 2  

0 

g 

C~ 

. d  

~2 = 0 

..... : - > J / / / -  
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CO 

Fig. 3. Percentage change of critical Rayleigh number vs 
frequency for Pr = 0.7, Bi = 1, P = 1, and r = 1. 
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Fig. 4. Percentage change of critical Rayleigh number vs 
frequency at different Planck numbers for Pr = 0.7, Bi = 1, 

r =  1, and ~ = 1. 

each curve represent the quasi-steady limit ~o ~ 0 for 
which ( R a / R a c ) - I - - } - ~ / ( l + e ) ,  where Rac is the 
critical Rayleigh number for the unmodulated cases, 
and can be found in ref. [2]. As frequency increases in 
the intermediate range, the critical Rayleigh number 
increases rapidly and becomes slightly higher than the 
value of  unmodulat ion at a certain value for each 
amplitude. For  frequencies higher than this value, 
modulat ion has a slight stabilizing effect, which 
reaches a maximum and then gradually decreases as 
o) continually increases. By comparing Figs. 2 and 3, 
it is seen that the stabilizing effect started at a lower 
frequency and the maximum effect is smaller for the 
case of  radiation-induced flow (Fig. 3) than for the 
case of  free radiation (Fig. 2). 

The Planck number,  the ratio of  emission to con- 
duction, is an important  parameter in radiation heat 
transfer. When P = 0, emission in the fluid layer is 
negligible compared with conduction. Consequently, 
the temperature distribution is linear and the critical 
Rayleigh number is smaller than the cases with a non- 
zero Planck number [2]. In the modulated cases, the 
smallest critical Rayleigh number still occurs at P = 0. 
But, in terms of  percentage change of  Rayleigh 
number, as shown in Fig. 4 for Pr = 0.7, Bi = 1, r = 1, 
and e = 1, with P = 0, 1 and 2, it can be seen that for 
smaller Planck number, the stabilizing effect starts 
at a lower frequency and the effect increases with 
increasing Planck number. 

Optical thickness, the ratio of  the thickness of  fluid 
layer to the penetration depth of  radiation, is another 
important  parameter in radiation-induced instability. 
Basically, the larger the optical thickness, the more 
radiative energy is retarded in reaching the lower 
boundary. Increasing optical thickness delays the 
onset of  instability, and this is especially apparent for 
z /> 1 [2]. For  modulat ion being present, the per- 
centage change of  Rayleigh number is shown in Fig. 
5 for r = 0.01, 0.1 and 1, with Pr = 0.7, Bi= 1~ P = 1, 
and e = 1. It is seen that the destabilization occurs at 
a lower frequency range for smaller optical thicknesses 
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Fig. 5. Percentage change of critical Rayleigh number vs 
frequency at different optical thicknesses for Pr = 0.7, 

Bi= I , P =  1, a n d c =  1. 
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Fig. 7. Critical Rayleigh number vs Biot number at different 
frequencies for Pr = 0.7, P = 1, r = 1, and e = 1. 

than for larger optical thicknesses and the maximum 
stabilization effect increases with increasing optical 
thickness. The percentage change of  critical Rayleigh 
number can be used to understand the destabilization 
or stabilization of  a modulated system compared with 
the unmodulated one. But the variation of  the critical 
Rayleigh number with a radiative property is difficult 
to see unless the ordinate is expressed in terms of  the 
absolute value. Figure 6 shows the variation of  critical 
Rayleigh number  vs optical thickness for different fre- 
quencies, with Pr = 0.7, Bi=  1, P = 1, and e = 1. The 
curve for e) = 10 is known from the foregoing figures 
to have a slight stabilization effect, and the critical 
Rayleigh number is almost equal to the unmodulated 
case. For  lower frequencies, it is seen that the lowest 
critical Rayleigh number occurs at a different optical 
thickness for each frequency, which is not  seen for the 
unmodulated one. It can also be seen that the smaller 
the optical thickness, the lower the frequency that 
stabilization starts to occur. 

Biot number was found to play dual roles on the 
occurrence of  instability [2]. Decreasing the Biot num- 
ber slightly decreases the critical Rayleigh number at 
large Biot numbers, and significantly increases the 

1 0  

' ° '  _ 

1 0  

1 0  2 . . . . . . . .  I . . . . . . . .  I . . . .  LIIIL L , , , ~ , , l l  , , , , , , ,  

1 0  ' 1 0  ~ 1 0  -2  1 0  -* 1 0  0 1 0  * 

T 

Fig. 6. Critical Rayleigh number vs optical thickness at 
different frequencies for Pr = 0.7, Bi = 1, P = 1, and e = 1. 

critical Rayleigh number at small Biot numbers. The 
effect of  Biot number on the critical Rayleigh number 
at different frequencies is shown in Fig. 7 for Pr = 0.7, 
P = 1, r = 1 and ~ -- 1. It is seen that the dependence 
of  the critical Rayleigh number on the Blot number is 
similar for all frequencies. The rapid increase of  criti- 
cal Rayleigh number at small Biot number is due to 
the decrease of  temperature difference between the 
lower plate and the upper surface. 

CONCLUSION 

When a fluid layer is sinusoidally heated from 
below, destabilization is found at low frequencies, and 
stabilization is found at high frequencies. In this study, 
a numerical method based on the linear stability the- 
ory and Floquet  theory is developed to trace the stab- 
ility boundary between stable and transiently stable 
states. The results are consistent with the amplitude 
criterion at low frequencies and periodicity criterion at 
high frequencies, developed by Rosenblat and Herbert  
[5], as well as the experimental data conducted by 
Finucane and Kelly [9]. 

When a fluid layer is heated by a modulated 
irradiation, energy absorbed by the lower boundary 
is released and heats the fluid. The mechanism is simi- 
lar to when a fluid layer is heated by modulated heat 
from below. Consequently, the same destabilization 
effects are seen at low frequencies and stabilization 
at high frequencies, which increase with increasing 
modulat ion amplitude. Increasing the radiative par- 
ameters, such as Planck number and optical thickness, 
shifts the starting frequency of  stabilization to a higher 
value and slightly increases the stabilizing effect at 
high frequencies. 
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